Scale criticality in estimating ecosystem carbon dynamics.

نویسندگان

  • Shuqing Zhao
  • Shuguang Liu
چکیده

Scaling is central to ecology and Earth system sciences. However, the importance of scale (i.e. resolution and extent) for understanding carbon dynamics across scales is poorly understood and quantified. We simulated carbon dynamics under a wide range of combinations of resolution (nine spatial resolutions of 250 m, 500 m, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km, and 100 km) and extent (57 geospatial extents ranging from 108 to 1 247 034 km(2) ) in the southeastern United States to explore the existence of scale dependence of the simulated regional carbon balance. Results clearly show the existence of a critical threshold resolution for estimating carbon sequestration within a given extent and an error limit. Furthermore, an invariant power law scaling relationship was found between the critical resolution and the spatial extent as the critical resolution is proportional to A(n) (n is a constant, and A is the extent). Scale criticality and the power law relationship might be driven by the power law probability distributions of land surface and ecological quantities including disturbances at landscape to regional scales. The current overwhelming practices without considering scale criticality might have largely contributed to difficulties in balancing carbon budgets at regional and global scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a Dynamic Data-Driven Application System for Estimating Real-Time Load of Dissolved Organic Carbon in a River

Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determination of DOC in surface water is primarily DDDAS developed in this study for estimating the real-time variation of DOC in a river ecosystem.

متن کامل

Estimating Net Ecosystem Exchange of Carbon Using the Normalized Difference Vegetation Index and an Ecosystem Model

T e evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ec...

متن کامل

Studying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)

Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...

متن کامل

From companies to colonies: The origin of Pareto-like distributions in ecosystems

Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this self-organized criticality is a manifestation of the law of proportionate effect, first discovered in th...

متن کامل

A Preliminary Study on the Carbon Dynamics of China’s Forest Ecosystems in the Past 20 Years

Carbon balance is characterized by the net ecosystem productivity (NEP), the difference between net primary productivity (NPP) and the heterotrophic respiration (Rh), namely the decomposition of dead organic matter by soil microbes. At the global scale, NEP is of great interest because it indicates the capacity of terrestrial ecosystems absorbing/releasing CO2 from/to the atmosphere. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Global change biology

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 2014